Orthomoleculair kennisinstituut
Menu

OPC

In het kort
  • Oligomere proanthocyanidinen (OPC) zijn bioflavonoïden die onder andere te vinden zijn in druivenpitten.
  • OPC, ook wel druivenpitextract genoemd, is een krachtige antioxidant en kan ingezet worden bij oxidatieve stress.
  • Druivenpitextract werkt als antioxidant, schimmelwerend, antibacterieel en ontstekingsremmend.
  • Een onderhoudsdosering OPC uit druivenpitten is 50 – 100 mg per dag. Therapeutische doseringen lopen op tot 400 mg per dag.
  • Druivenpitextract kan onder andere ingezet worden bij hoge bloeddruk, artritis, cholesterol en wonden.
In het kort

Wat is OPC?

De afkorting OPC staat voor oligomere proanthocyanidinen. Deze bioflavonoïden zijn voornamelijk te vinden in druivenpitten, maar ook in de vrucht, bladeren en zaden van de druif. Druivenproducten bevatten fenolverbindingen, waaronder oligomere proanthocyanidinen (OPC’s), proanthocyanidinen, flavonolen en polyflavan-3-olen. Proanthocyanidinen zijn verantwoordelijk voor het produceren van de rode kleur van druiven.1 OPC, ook wel druivenpitextract genoemd, is een krachtige antioxidant.

Wat is OPC?

Gebruik

OPC kan onder andere toegepast worden bij oedeem, hart- en vaataandoeningen, huidveroudering, ontstekingen, allergieën, huidaandoeningen en oogziekten.

Gebruik

Werking

Chronische veneuze insufficiëntie

Orale inname van druivenbladextract kan de symptomen van chronische veneuze insufficiëntie (CVI) verbeteren. Bij het innemen van een specifiek druivenbladextract (AS 195, Antistax, Boehringer Ingelheim) lijkt bij CVI-patiënten beenoedeem te verbeteren na zes weken behandeling in vergelijking met een placebo. Dagelijkse doseringen van 360 mg en 720 mg waren beide effectief, maar de hogere dosering had een iets groter effect. Patiënten meldden ook een afname van subjectieve klachten zoals vermoeide of zware benen, tintelingen en pijn na een behandeling van 2-12 weken.2,3,4,5

ACE-remmende effecten

In vitro bewijs toont aan dat proanthocyanidinen en oligomere proanthocyanidinen (OPC’s) uit druiven de angiotensine-converterende enzymactiviteit (ACE) kunnen remmen.6,7 Dit resulteert in het verwijden van de bloedvaten en het verlagen van de bloeddruk. In onderzoek met konijnen lijken OPC’s een hoge bloeddruk te verminderen die veroorzaakt wordt door intraveneuze infusie van angiotensine I en angiotenine II.6

Anti-allergie

Voorlopig onderzoek suggereert dat catechinen uit druiven allergeen-geïnduceerde afgifte van histamine uit mestcellen kunnen remmen.8

Artritis

Dieronderzoek toont aan dat druivenpitextract de symptomen van collageen-geïnduceerde artritis kan verbeteren. In vitro-onderzoek suggereert dat dit effect mogelijk het gevolg is van onderdrukking van de productie van interleukine-17 en verbetering van de Foxp3-expressie in splenocyten en CD4+ T-cellen in gewrichten.9

Antibacteriële effecten

In vitro-onderzoek toont aan dat de zaad, schil en extract van hele druiven de groei van bacteriën kunnen remmen, waaronder Bacillus cereus, Bacillus subtilis, Streptococcus faecalis en Staphylococcus aureus.10,11

Kanker

Druivenpitextract en proanthocyanidinen uit druivenpitten lijken de proliferatie van maagkanker, borstkanker, darmkanker, longkanker, prostaatkanker, leukemie en glioblastoomcellen te verminderen door de celgroei te remmen en de celdood te verhogen.12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30

Een manier waarop druivenpitextract de groei van kanker lijkt te remmen, is door angiogenese te voorkomen door de vasculaire endotheliale groeifactor te blokkeren.31,32

Proanthocyanidinen en polyfenolen van druiven lijken uitzaaiingen van niet-kleincellige longkanker, prostaatkanker en borstkankercellen te voorkomen.22,33,34

Schimmelwerend

Sommige in vitro-onderzoeken suggereren dat druivenextract, toegepast in concentraties van één tot tien procent, de groei van de zwarte schimmel Aspergillus niger remt.35

Ontstekingsremmend

Druivenblad heeft naar verluidt ontstekingsremmende eigenschappen. Deze eigenschappen blijken het grootst te zijn bij de rode bladeren.36 In verschillende diermodellen en in een studie met mensen is aangetoond dat druivenpitextract en druivenpoeder ontstekingen verminderen en/of pro-inflammatoire cytokines verminderen.37,38,39,40,41

De werkingsmechanisme(n) die ten grondslag liggen aan de ontstekingsremmende effecten van druivenbestanddelen omvatten naar verluidt het wegvangen van vrije radicalen, interferentie met abnormale celproliferatie en/of het verminderen van cytokine-activiteit en cyclo-oxygenase-2.42,43,44

Cholesterol

Sommige klinische onderzoeken tonen aan dat druivenextracten de niveaus van triacylglycerol en LDL-cholesterol verlagen bij gezonde volwassenen en mensen met verhoogde niveaus bij het begin van het onderzoek.45

Bij dieren die een cholesterolrijk dieet kregen, lijkt de inname van polymere tannines uit druivenpitten de toename van de concentraties van totaal cholesterol in het plasma, triacylglycerol, LDL-cholesterol en zeer lage LDL-cholesterol (VLDL) te verminderen, evenals de afname van HDL-cholesterol te verzwakken.46

In vitro bewijs suggereert dat bestanddelen van druivenschors HMG-CoA-reductase kunnen remmen.47 Druivenpitextract lijkt de opname van cholesterol in darm- en levercellen te remmen.48 Ander in vitro bewijs toont aan dat polyfenolen uit rode druivensap de cholesterolhomeostase kunnen veranderen en de LDL-receptoractiviteit in menselijke levercellen en bloedcellen kunnen verhogen.49

Antioxiderend

Rode druivensoorten bieden meer antioxidantbescherming dan witte druivensoorten ( 3579). Ook lijken verse druiven een hogere antioxiderende werking te hebben dan druivenjam en rozijnen ( 53255 ).

Er lijkt een significante correlatie te bestaan ​​tussen het totale fenolgehalte, het proanthocyanidinegehalte en de antioxidantactiviteit van druivenproducten.1,50,51 Rode druivensoorten bieden meer antioxidantbescherming dan witte druivensoorten.1 Ook lijken verse druiven een hogere antioxiderende werking te hebben dan druivenjam en rozijnen.52

Een specifiek druivenpitextract (Leucoselect) dat 300 mg proanthocyanidinen uit druivenpitten bevat, lijkt de totale antioxiderende activiteit bij gezonde mensen te verhogen.53 Een ander extract van druivenpitten (Leucoselect-Phytosome) dat 75 mg proanthocyanidinen uit druiven bevat, lijkt bij zware rokers de gevoeligheid van LDL voor oxidatie te verminderen.54

Evenzo lijkt 375 mg druivenextract (Biovin, Cyvex Nutrition Inc) met ongeveer 40% polyfenolen het antioxidantpotentieel te verhogen en de eiwit- en LDL-oxidatie bij gezonde mensen te verlagen.55 Druivenpulp, dat polyfenolen en tocoferolen bevat, verhoogt het antioxidantpotentieel en verlaagt de LDL-oxidatie bij mannen met overgewicht of obesitas.56

Voorlopig bewijs suggereert ook dat proanthocyanidinen uit druivenpitten een betere bescherming kunnen bieden tegen reactieve zuurstofcomponenten, door vrije radicalen geïnduceerde lipideperoxidatie en DNA-schade dan de combinatie van vitamine E, vitamine C en bètacaroteen of een combinatie van vitamine E en vitamine C.13

Anti gif

Het methanol-extract van druivenpitten lijkt sommige effecten van het gif van de zaagschubadder (Echis carinatus) te remmen.57

Hart en vaten

Druivenpolyfenolen, met name flavonoïden, hebben een breed scala aan effecten, die hartaandoeningen kunnen voorkomen. Dit komt onder andere door de antioxiderende, vaatverwijdende, anti-lipoperoxidant en antibloedplaatjes eigenschappen.50,53,56,58,59,60,61,62,63,64,65

Er zijn aanwijzingen dat proanthocyanidinen uit druivenpitten reperfusieschade na cardiale ischemie kunnen verminderen door vrije radicalen te verwijderen. Dit zou ook het voorkomen van hartritmestoornissen kunnen verminderen die soms optreden bij reperfusieletsel van het hart.66

In vitro-onderzoek suggereert dat druivenpitextract vasculaire ontsteking kan verbeteren.67 Bovendien wordt er gespeculeerd dat hele druivenextracten de vasculaire functie kunnen verbeteren bij patiënten met het metabool syndroom. Mannen met dit syndroom die gedurende een maand dagelijks 46 gram van een poeder consumeerden dat bereid was uit gedehydrateerde druiven hadden onder andere een verlaagde bloeddruk en een verhoogde vasodilatatie van de bovenarmslagader.68

Onderzoek suggereert dat druivenpitextract rijk aan proanthocyanidinen de ontwikkeling van atherosclerose in de aorta veroorzaakt door een dieet met veel cholesterol kan verminderen, mogelijk door LDL-oxidatie te voorkomen.69

Tandheelkunde

Matrixmetalloproteïnasen (MMP’s) worden geproduceerd als reactie op ziekteverwekkers en spelen een rol bij de weefselvernietiging die gepaard gaat met ernstige tandvleesontsteking (parodontitis). Druivenpitextract lijkt de secretie en/of activiteit van verschillende MMP’s te remmen.70

Sommige voorlopige onderzoeken suggereren dat druivenpitextract de demineralisatie kan verminderen en de remineralisatie van wortelcariës kan verhogen.71,72,73,74,75

Dermatologische effecten

Aangenomen wordt dat oligomere proanthocyanidinen (OPC’s) de proteolytische enzymen collagenase, elastase, hyaluronidase en beta-glucuronidase remmen, die betrokken zijn bij de afbraak van structurele componenten van het vaatstelsel en de huid.76 Van OPC’s wordt ook gedacht dat ze melanocyten beschermen tegen melanogenese door intracellulaire reactieve oxidatieve soorten op te ruimen, de celcyclus te veranderen en de niveaus van enzymen die betrokken zijn bij de melaninesynthese te verlagen.77,78,79,80 Ook lijken proanthocyanidinen uit druivenpitten door UV-straling geïnduceerde oxidatieve stress in menselijke huidcellen te remmen.78,81

Celschade door medicatie, tabak en chemotherapie

Proanthocyanidinen uit druivenpitten lijken het CYP2E1-enzym te remmen, dat normale cellen zou kunnen beschermen tegen door geneesmiddelen en chemicaliën geïnduceerde toxiciteit.13 Proanthocyanidinen kunnen ook beschermen tegen door tabak veroorzaakte en door chemotherapie veroorzaakte schade aan normale cellen, en lever- en nierbeschadiging minimaliseren na overdosering van paracetamol.13

Maagdarmstelsel

Van druiven wordt gezegd dat ze laxerende en slijmoplossende eigenschappen hebben.36 Ook toont voorlopig onderzoek bij mensen aan dat druivenpitextract buikpijn bij chronische alvleesklierontsteking kan verminderen.82

Lever

Bij dieren zijn leverbeschermende effecten waargenomen die zijn toegeschreven aan de antioxiderende effecten van extracten uit druivenpulp, waaronder verminderde lipideperoxidatie en herstelde antioxidant-enzymniveaus.83

Neurologisch

In muizen met de ziekte van Alzheimer is aangetoond dat druivenpitextract afzetting van bèta-amyloïde voorkomt en hersenontsteking verzacht.84 Theoretisch kunnen proanthocyanidinen uit druivenpitten nuttig zijn als therapeutische middelen voor het verlichten van symptomen zoals braken of pijn.85

Fotoprotectie

Dieronderzoek toont aan dat proanthocyanidinen uit druivenpitten de door UVB geïnduceerde oxidatieve stress kunnen remmen en het voorkomen, de verdubbeling en het aantal kwaadaardige transformaties van door UV geïnduceerde huidkanker kunnen verminderen.79,86 Ook toont in vitro-onderzoek aan dat proanthocyanidinen uit druivenpitten fotoprotectieve effecten hebben in UV-bestraalde melanocyten van mensen.80,81

Wondgenezing

Voorlopig klinisch onderzoek toont aan dat het aanbrengen van druivenpitextract, dat proanthocyanidinen bevat, de tijd voor volledige wondgenezing kan verkorten.87

Werking

Veiligheid

Volwassenen

Druivenpitextract is waarschijnlijk veilig bij oraal gebruik in hoeveelheden die gewoonlijk in voedingsmiddelen worden aangetroffen. Druiven en extracten van druivenschillen hebben de GRAS-status in de VS, wat vertaalt naar ‘algemeen erkend als veilig’.88

Mogelijk veilig wanneer de hele vrucht van de druif, of extracten van de vrucht, het zaad of het blad, oraal en op de juiste manier in medicinale hoeveelheden worden gebruikt. Druivenpitextracten zijn schijnbaar veilig gebruikt in dagelijkse doseringen tot 200 mg gedurende maximaal 11 maanden en in dagelijkse doseringen tot 2000 mg gedurende maximaal drie maanden.8,89,90,91

Crèmes en zalven die twee of vijf procent druivenpitextract bevatten zijn tot drie weken topisch gebruikt met schijnbare veiligheid.87,92

Kinderen, zwangerschap en borstvoeding

Druivenpitextract is waarschijnlijk veilig bij oraal gebruik in hoeveelheden die normaal in voedingsmiddelen zit.

Veiligheid

Interacties

Medicijnen

Theoretisch kunnen druivenextracten antibloedplaatjeseffecten hebben en het risico op bloedingen verhogen als ze worden gebruikt met anticoagulantia of antibloedplaatjesgeneesmiddelen.64,93

Een kleine farmacokinetische studie bij gezonde jonge volwassenen toont aan dat de inname van 200 ml paars druivensap samen met ciclosporine de opname van het medicijn tot wel 30 procent kan verminderen in vergelijking met water.94

Theoretisch zou druivenpitextract de niveaus van verschillende substraten kunnen veranderen:

  • Verlagen van CYP1A2 waardoor de opname van fenacetine kan verlagen.95
  • Verhogen van CYP2D6.96
  • Verhogen van CYP2E1.97
  • Verhogen van CYP3A4 waardoor de eliminatie van midazolam kan verhogen.96

Kruiden/supplementen

In vitro bewijs suggereert dat druivenextracten de aggregatie van bloedplaatjes kunnen verminderen.64,93 In combinatie met andere kruiden/supplementen die bloedplaatjesaggregatieremmende effecten hebben kan dit aanvullende effecten hebben.

Interacties

Dosering

Volwassen – Oraal

Er zijn veel verschillende formuleringen gebruikt, waaronder hele druivenextracten, druivenpitextracten, druivenblad- of wijnstokextracten, druivensappen en druivenpulp.

Druivenpit- of hele druivenextracten die in klinisch onderzoek worden gebruikt, zijn meestal gestandaardiseerd op basis van het gehalte aan polyfenolen of proanthocyanidinen, een specifieke klasse polyfenolen.

Een gangbare dosering OPC’s uit druivenpitten is 50 – 100 mg per dag. Therapeutische doseringen rangeren van 150 tot 400 mg per dag.

Dosering
Referenties
  1. Meyer, A. S., Yi, O. S., Pearson, D. A., Waterhouse, A. L., & Frankel, E. N. (1997). Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). Journal of agricultural and Food Chemistry, 45(5), 1638-1643.
  2. Kiesewetter, H., Koscielny, J., Kalus, U., Vix, J. M., Peil, H., Petrini, O., … & de Mey, C. (2000). Efficacy of orally administered extract of red vine leaf AS 195 (folia vitis viniferae) in chronic venous insufficiency (stages l-ll). Arzneimittelforschung, 50(02), 109-117.
  3. Schaefer, E., Peil, H., Ambrosetti, L., & Petrini, O. (2003). Oedema protective properties of the red vine leaf extract AS 195 (Folia vitis viniferae) in the treatment of chronic venous insufficiency. Arzneimittelforschung, 53(04), 243-246.
  4. Kalus, U., Koscielny, J., Grigorov, A., Schaefer, E., Peil, H., & Kiesewetter, H. (2004). Improvement of cutaneous microcirculation and oxygen supply in patients with chronic venous insufficiency by orally administered extract of red vine leaves AS 195. Drugs in R & D, 5(2), 63-71.
  5. Rabe, E., Stücker, M., Esperester, A., Schäfer, E., & Ottillinger, B. (2011). Efficacy and tolerability of a red-vine-leaf extract in patients suffering from chronic venous insufficiency–results of a double-blind placebo-controlled study. European Journal of Vascular and Endovascular Surgery, 41(4), 540-547.
  6. Meunier, M. T., Villié, F., Jonadet, M., Bastide, J., & Bastide, P. (1987). Inhibition of angiotensin I converting enzyme by flavanolic compounds: in vitro and in vivo studies. Planta medica, 53(01), 12-15.
  7. Eriz, G., Sanhueza, V., Roeckel, M., & Fernández, K. (2011). Inhibition of the angiotensin-converting enzyme by grape seed and skin proanthocyanidins extracted from Vitis vinífera L. cv. País. LWT-Food science and technology, 44(4), 860-865.
  8. Bernstein, D. I., Bernstein, C. K., Deng, C., Murphy, K. J., Bernstein, I. L., Bernstein, J. A., & Shukla, R. (2002). Evaluation of the clinical efficacy and safety of grapeseed extract in the treatment of fall seasonal allergic rhinitis: a pilot study. Annals of Allergy, Asthma & Immunology, 88(3), 272-278.
  9. Park, M. K., Park, J. S., Cho, M. L., Oh, H. J., Heo, Y. J., Woo, Y. J., … & Min, J. K. (2011). Grape seed proanthocyanidin extract (GSPE) differentially regulates Foxp3+ regulatory and IL-17+ pathogenic T cell in autoimmune arthritis. Immunology Letters, 135(1-2), 50-58.
  10. Palma, M., Taylor, L. T., Varela, R. M., Cutler, S. J., & Cutler, H. G. (1999). Fractional extraction of compounds from grape seeds by supercritical fluid extraction and analysis for antimicrobial and agrochemical activities. Journal of agricultural and food chemistry, 47(12), 5044-5048.
  11. Butkhup, L., Chowtivannakul, S., Gaensakoo, R., Prathepha, P., & Samappito, S. (2010). Study of the phenolic composition of Shiraz red grape cultivar (Vitis vinifera L.) cultivated in north-eastern Thailand and its antioxidant and antimicrobial activity. South African Journal of Enology and Viticulture, 31(2), 89-98.
  12. Agarwal, C., Sharma, Y., & Agarwal, R. (2000). Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell‐cycle regulators and induction of G1 arrest and apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 28(3), 129-138.
  13. Bagchi, D., Bagchi, M., Stohs, S. J., Ray, S. D., Sen, C. K., & Preuss, H. G. (2002). Cellular protection with proanthocyanidins derived from grape seeds. Annals of the New York Academy of Sciences, 957(1), 260-270.
  14. Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular cancer therapeutics, 5(12), 3294-3302.
  15. Agarwal, C., Sharma, Y., Zhao, J., & Agarwal, R. (2000). A polyphenolic fraction from grape seeds causes irreversible growth inhibition of breast carcinoma MDA-MB468 cells by inhibiting mitogen-activated protein kinases activation and inducing G1 arrest and differentiation. Clinical Cancer Research, 6(7), 2921-2930.
  16. Agarwal, C., Singh, R. P., & Agarwal, R. (2002). Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis, 23(11), 1869-1876.
  17. Katsuzaki, H., Hibasami, H., Ohwaki, S., Ishikawa, K., Imai, K., Kimura, Y., & Komiya, T. (2003). Cyanidin 3-O-β-D-glucoside isolated from skin of black Glycine max and other anthocyanins isolated from skin of red grape induce apoptosis in human lymphoid leukemia Molt 4B cells. Oncology reports, 10(2), 297-300.
  18. Tyagi, A., Agarwal, R., & Agarwal, C. (2003). Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Oncogene, 22(9), 1302-1316.
  19. Dhanalakshmi, S., Agarwal, R., & Agarwal, C. (2003). Inhibition of NF-κB pathway in grape seed extract-induced apoptotic death of human prostate carcinoma DU145 cells. International journal of oncology, 23(3), 721-727.
  20. Nomoto, H., Iigo, M., Hamada, H., Kojima, S., & Tsuda, H. (2004). Chemoprevention of colorectal cancer by grape seed proanthocyanidin is accompanied by a decrease in proliferation and increase in apoptosis. Nutrition and cancer, 49(1), 81-88.
  21. Veluri, R., Singh, R. P., Liu, Z., Thompson, J. A., Agarwal, R., & Agarwal, C. (2006). Fractionation of grape seed extract and identification of gallic acid as one of the major active constituents causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis, 27(7), 1445-1453.
  22. Mantena, S. K., Baliga, M. S., & Katiyar, S. K. (2006). Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis, 27(8), 1682-1691.
  23. Kaur, M., Agarwal, R., & Agarwal, C. (2006). Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated–p53 activation. Molecular cancer therapeutics, 5(5), 1265-1274.
  24. Kaur, M., Singh, R. P., Gu, M., Agarwal, R., & Agarwal, C. (2006). Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clinical Cancer Research, 12(20), 6194-6202.
  25. Agarwal, C., Veluri, R., Kaur, M., Chou, S. C., Thompson, J. A., & Agarwal, R. (2007). Fractionation of high molecular weight tannins in grape seed extract and identification of procyanidin B2-3, 3′-di-O-gallate as a major active constituent causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis, 28(7), 1478-1484.
  26. Engelbrecht, A. M., Mattheyse, M., Ellis, B., Loos, B., Thomas, M., Smith, R., … & Myburgh, K. (2007). Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer letters, 258(1), 144-153.
  27. Zhang, F. J., Yang, J. Y., Mou, Y. H., Sun, B. S., Ping, Y. F., Wang, J. M., … & Wu, C. F. (2009). Inhibition of U-87 human glioblastoma cell proliferation and formyl peptide receptor function by oligomer procyanidins (F2) isolated from grape seeds. Chemico-biological interactions, 179(2-3), 419-429.
  28. Hsu, C. P., Lin, Y. H., Chou, C. C., Zhou, S. P., Hsu, Y. C., Liu, C. L., … & Chung, Y. C. (2009). Mechanisms of grape seed procyanidin-induced apoptosis in colorectal carcinoma cells. Anticancer research, 29(1), 283-289.
  29. Zhang, F. J., Yang, J. Y., Mou, Y. H., Sun, B. S., Wang, J. M., & Wu, C. F. (2010). Oligomer procyanidins from grape seeds induce a paraptosis-like programmed cell death in human glioblastoma U-87 cells. Pharmaceutical biology, 48(8), 883-890.
  30. Chen, W. T. L., Yang, T. S., Chen, H. C., Chen, H. H., Chiang, H. C., Lin, T. C., … & Kuo, M. L. (2014). Effectiveness of a novel herbal agent MB-6 as a potential adjunct to 5-fluoracil–based chemotherapy in colorectal cancer. Nutrition research, 34(7), 585-594.
  31. Barthomeuf, C., Lamy, S., Blanchette, M., Boivin, D., Gingras, D., & Béliveau, R. (2006). Inhibition of sphingosine-1-phosphate-and vascular endothelial growth factor-induced endothelial cell chemotaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. Free Radical Biology and Medicine, 40(4), 581-590.
  32. Wen, W., Lu, J., Zhang, K., & Chen, S. (2008). Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway. Cancer Prevention Research, 1(7), 554-561.
  33. Punathil, T., & Katiyar, S. K. (2009). Inhibition of non‐small cell lung cancer cell migration by grape seed proanthocyanidins is mediated through the inhibition of nitric oxide, guanylate cyclase, and ERK1/2. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 48(3), 232-242.
  34. Castillo-Pichardo, L., Martínez-Montemayor, M. M., Martínez, J. E., Wall, K. M., Cubano, L. A., & Dharmawardhane, S. (2009). Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clinical & experimental metastasis, 26(6), 505-516.
  35. Murgov, I., Acikbas, M., & Nikolova, R. (2008). Antimicrobial activity of citric acid and grape seed extract on pathogenic microorganisms and lactobacilli. Scientific Works of the University of Food Technologies – Plovdiv. 55(1), 367-372.
  36. Chevallier, A. (1996). The Encyclopedia of Medicinal Plants. Dorling Kindersley Limited.
  37. Cheah, K. Y., Howarth, G. S., Yazbeck, R., Wright, T. H., Whitford, E. J., Payne, C., … & Bastian, S. E. (2009). Grape seed extract protects IEC-6 cells from chemotherapy-induced cytotoxicity and improves parameters of small intestinal mucositis in rats with experimentally-induced mucositis. Cancer Biology & Therapy, 8(4), 382-390.
  38. Pan, X., Dai, Y., Li, X., Niu, N., Li, W., Liu, F., … & Yu, Z. (2011). Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation. Toxicology and applied pharmacology, 254(3), 323-331.
  39. Pires, K. M. P., Valenca, S. S., Resende, A. C., Porto, L. C., Queiroz, E. F., Moreira, D. D. C., & de Moura, R. S. (2011). Grape skin extract reduced pulmonary oxidative response in mice exposed to cigarette smoke. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 17(8), BR187.
  40. Chuang, C. C., Shen, W., Chen, H., Xie, G., Jia, W., Chung, S., & McIntosh, M. K. (2012). Differential effects of grape powder and its extract on glucose tolerance and chronic inflammation in high-fat-fed obese mice. Journal of Agricultural and Food Chemistry, 60(51), 12458-12468.
  41. Han, H. J., Jung, U. J., Kim, H. J., Cho, S. J., Kim, A. H., Han, Y., & Choi, M. S. (2016). Combined supplementation with grape pomace and omija fruit ethanol extracts dose-dependently improves body composition, plasma lipid profiles, inflammatory status, and antioxidant capacity in overweight and obese subjects. Journal of medicinal food, 19(2), 170-180.
  42. Sen, C. K., & Bagchi, D. (2001). Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Molecular and cellular biochemistry, 216(1), 1-7.
  43. Sovak, M. (2001). Grape extract, resveratrol, and its analogs: a review. Journal of medicinal food, 4(2), 93-105.
  44. Overman, A., Bumrungpert, A., Kennedy, A., Martinez, K., Chuang, C. C., West, T., … & McIntosh, M. (2010). Polyphenol-rich grape powder extract (GPE) attenuates inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. International Journal of Obesity, 34(5), 800-808.
  45. Ghaedi, E., Moradi, S., Aslani, Z., Kord-Varkaneh, H., Miraghajani, M., & Mohammadi, H. (2019). Effects of grape products on blood lipids: a systematic review and dose–response meta-analysis of randomized controlled trials. Food & function, 10(10), 6399-6416.
  46. Tebib, K., Bitri, L., Besançon, P., & Rouanet, J. M. (1994). Polymeric grape seed tannins prevent plasma cholesterol changes in high-cholesterol-fed rats. Food Chemistry, 49(4), 403-406.
  47. Koo, M., Kim, S. H., Lee, N., Yoo, M. Y., Ryu, S. Y., Kwon, D. Y., & Kim, Y. S. (2008). 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitory effect of Vitis vinifera. Fitoterapia, 79(3), 204-206.
  48. Leifert, W. R., & Abeywardena, M. Y. (2008). Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity. Nutrition Research, 28(12), 842-850.
  49. Davalos, A., Fernandez-Hernando, C., Cerrato, F., Martínez-Botas, J., Gomez-Coronado, D., Gomez-Cordoves, C., & Lasuncion, M. A. (2006). Red grape juice polyphenols alter cholesterol homeostasis and increase LDL-receptor activity in human cells in vitro. The Journal of nutrition, 136(7), 1766-1773.
  50. Freedman, J. E., Parker III, C., Li, L., Perlman, J. A., Frei, B., Ivanov, V., … & Folts, J. D. (2001). Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation, 103(23), 2792-2798.
  51. Caillet, S., Salmieri, S., & Lacroix, M. (2007). Evaluation of free radical scavenging properties of grape phenolic extracts by a fast colorimetric method. Acta horticulturae.
  52. Rababah, T. M., Al‐u’datt, M., Almajwal, A., Brewer, S., Feng, H., Al‐Mahasneh, M., … & Yang, W. (2012). Evaluation of the nutraceutical, physiochemical and sensory properties of raisin jam. Journal of Food Science, 77(6), C609-C613.
  53. Nuttall, S. L., Kendall, M. J., Bombardelli, E., & Morazzoni, P. (1998). An evaluation of the antioxidant activity of a standardized grape seed extract, Leucoselect®. Journal of clinical pharmacy and therapeutics, 23(5), 385-389.
  54. Vigna, G. B., Costantini, F., Aldini, G., Carini, M., Catapano, A., Schena, F., … & Facino, R. M. (2003). Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism, 52(10), 1250-1257.
  55. Rao, A. V., Shen, H., Agarwal, A., Yatcilla, M. T., & Aagarwal, S. (2000). Bioabsorption and in vivo antioxidant properties of grape extract biovin®: A human intervention study. Journal of Medicinal Food, 3(1), 15-22.
  56. Urquiaga, I., Troncoso, D., Mackenna, M. J., Urzúa, C., Pérez, D., Dicenta, S., … & Rigotti, A. (2018). The consumption of beef burgers prepared with wine grape pomace flour improves fasting glucose, plasma antioxidant levels, and oxidative damage markers in humans: a controlled trial. Nutrients, 10(10), 1388.
  57. Mahadeswaraswamy, Y. H., Nagaraju, S., Girish, K. S., & Kemparaju, K. (2008). Local tissue destruction and procoagulation properties of Echis carinatus venom: inhibition by Vitis vinifera seed methanol extract. Phytotherapy research, 22(7), 963-969.
  58. Chisholm, A., Mann, J., Skeaff, M., Frampton, C., Sutherland, W., Duncan, A., & Tiszavari, S. (1998). A diet rich in walnuts favourably influences plasma fatty acid profile in moderately hyperlipidaemic subjects. European Journal of Clinical Nutrition, 52(1), 12-16.
  59. Keevil, J. G., Osman, H. E., Reed, J. D., & Folts, J. D. (2000). Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. The Journal of nutrition, 130(1), 53-56.
  60. Shanmuganayagam, D., Beahm, M. R., Osman, H. E., Krueger, C. G., Reed, J. D., & Folts, J. D. (2002). Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. The Journal of nutrition, 132(12), 3592-3598.
  61. Olas, B., Wachowicz, B., Tomczak, A., Erler, J., Stochmal, A., & Oleszek, W. (2008). Comparative anti-platelet and antioxidant properties of polyphenol-rich extracts from: berries of Aronia melanocarpa, seeds of grape and bark of Yucca schidigera in vitro. Platelets, 19(1), 70-77.
  62. Vitseva, O., Varghese, S., Chakrabarti, S., Folts, J. D., & Freedman, J. E. (2005). Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. Journal of cardiovascular pharmacology, 46(4), 445-451.
  63. Lekakis, J., Rallidis, L. S., Andreadou, I., Vamvakou, G., Kazantzoglou, G., Magiatis, P., … & Kremastinos, D. T. (2005). Polyphenols compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. European Journal of Preventive Cardiology, 12(6), 596-600.
  64. De Lange, D. W., Verhoef, S., Gorter, G., Kraaijenhagen, R. J., Van De Wiel, A., & Akkerman, J. W. N. (2007). Polyphenolic grape extract inhibits platelet activation through PECAM‐1: an explanation for the French paradox. Alcoholism: Clinical and Experimental Research, 31(8), 1308-1314.
  65. Kamiyama, M., Kishimoto, Y., Tani, M., Andoh, K., Utsunomiya, K., & Kondo, K. (2009). Inhibition of low-density lipoprotein oxidation by Nagano purple grape (Vitis vinifera× Vitis labrusca). Journal of nutritional science and vitaminology, 55(6), 471-478.
  66. Pataki, T., Bak, I., Kovacs, P., Bagchi, D., Das, D. K., & Tosaki, A. (2002). Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. The American journal of clinical nutrition, 75(5), 894-899.
  67. Schön, C., Allegrini, P., Engelhart-Jentzsch, K., Riva, A., & Petrangolini, G. (2021). Grape seed extract positively modulates blood pressure and perceived stress: a randomized, double-blind, placebo-controlled study in healthy volunteers. Nutrients, 13(2), 654.
  68. Barona, J., Aristizabal, J. C., Blesso, C. N., Volek, J. S., & Fernandez, M. L. (2012). Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. The Journal of nutrition, 142(9), 1626-1632.
  69. Yamakoshi, J., Kataoka, S., Koga, T., & Ariga, T. (1999). Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis, 142(1), 139-149.
  70. La, V. D., Bergeron, C., Gafner, S., & Grenier, D. (2009). Grape Seed Extract Suppresses Lipopolysaccharide‐Induced Matrix Metalloproteinase (MMP) Secretion by Macrophages and Inhibits Human MMP‐1 and− 9 Activities. Journal of periodontology, 80(11), 1875-1882.
  71. Xie, Q., Bedran-Russo, A. K., & Wu, C. D. (2008). In vitro remineralization effects of grape seed extract on artificial root caries. Journal of dentistry, 36(11), 900-906.
  72. Gazzani, G., Daglia, M., & Papetti, A. (2012). Food components with anticaries activity. Current opinion in biotechnology, 23(2), 153-159.
  73. Fang, M., Liu, R., Xiao, Y., Li, F., Wang, D., Hou, R., & Chen, J. (2012). Biomodification to dentin by a natural crosslinker improved the resin–dentin bonds. Journal of dentistry, 40(6), 458-466.
  74. Islam, M. S., Hiraishi, N., Nassar, M., Sono, R., Otsuki, M., Takatsura, T., … & Tagami, J. (2012). In vitro effect of hesperidin on root dentin collagen and de/re-mineralization. Dental materials journal, 2011-203.
  75. Benjamin, S., Sharma, R., Thomas, S. S., & Nainan, M. T. (2012). Grape seed extract as a potential remineralizing agent: a comparative in vitro study. J Contemp Dent Pract, 13(4), 425-30.
  76. Peirce, A. (1999). The American Pharmaceutical Association practical guide to natural medicines. William Morrow and Company. Inc., New York.
  77. Baliga, M. S., & Katiyar, S. K. (2006). Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochemical & Photobiological Sciences, 5(2), 243-253.
  78. Mantena, S. K., & Katiyar, S. K. (2006). Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-κB signaling in human epidermal keratinocytes. Free Radical Biology and Medicine, 40(9), 1603-1614.
  79. Sharma, S. D., Meeran, S. M., & Katiyar, S. K. (2007). Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-κB signaling in in vivo SKH-1 hairless mice. Molecular cancer therapeutics, 6(3), 995-1005.
  80. Zi, S. X., Ma, H. J., Li, Y., Liu, W., Yang, Q. Q., Zhao, G., & Lian, S. (2009). Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. International Journal of Molecular Medicine, 23(2), 197-204.
  81. Matito, C., Agell, N., Sanchez-Tena, S., Torres, J. L., & Cascante, M. (2011). Protective effect of structurally diverse grape procyanidin fractions against UV-induced cell damage and death. Journal of agricultural and food chemistry, 59(9), 4489-4495.
  82. Banerjee, B., & Bagchi, D. (2001). Beneficial effects of a novel IH636 grape seed proanthocyanidin extract in the treatment of chronic pancreatitis. Digestion, 63(3), 203-206.
  83. Chidambara Murthy, K. N., Singh, R. P., & Jayaprakasha, G. K. (2002). Antioxidant activities of grape (Vitis vinifera) pomace extracts. Journal of agricultural and food chemistry, 50(21), 5909-5914.
  84. Wang, Y. J., Thomas, P., Zhong, J. H., Bi, F. F., Kosaraju, S., Pollard, A., … & Zhou, X. F. (2009). Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotoxicity research, 15(1), 3-14.
  85. Li, Q. Z., Cho, H. S., Jeun, S. H., Kim, K. J., Choi, S. J., & Sung, K. W. (2011). Effects of grape seed proanthocyanidin on 5-hydroxytryptamine3 receptors in NCB-20 neuroblastoma cells. Biological and Pharmaceutical Bulletin, 34(7), 1109-1115.
  86. Katiyar, S. K. (2008). Grape seed proanthocyanidines and skin cancer prevention: inhibition of oxidative stress and protection of immune system. Molecular nutrition & food research, 52(S1), S71-S76.
  87. Hemmati, A. A., Houshmand, G., Moosavi, Z. B., Bahadoram, M., & Maram, N. S. (2015). The topical effect of grape seed extract 2% cream on surgery wound healing. Global journal of health science, 7(3), 52.
  88. US Food & Drug Administration (2022). Part 182: Substances Generally Recognized as Safe. Subpart A – General Provisions. Electronic code of Federal Regulations.
  89. Yamakoshi, J., Sano, A., Tokutake, S., Saito, M., Kikuchi, M., Kubota, Y., … & Otsuka, F. (2004). Oral intake of proanthocyanidin‐rich extract from grape seeds improves chloasma. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(11), 895-899.
  90. Sivaprakasapillai, B., Edirisinghe, I., Randolph, J., Steinberg, F., & Kappagoda, T. (2009). Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism, 58(12), 1743-1746.
  91. Khoshbaten, M., Aliasgarzadeh, A., Masnadi, K., Farhang, S., Tarzamani, M. K., Babaei, H., … & Najafipoor, F. (2010). Grape seed extract to improve liver function in patients with nonalcoholic fatty liver change. Saudi journal of gastroenterology: official journal of the Saudi Gastroenterology Association, 16(3), 194.
  92. Izadpanah, A., Soorgi, S., & Geraminejad, N. (2019). Effect of grape seed extract ointment on cesarean section wound healing: A double-blind, randomized, controlled clinical trial. Complementary Therapies in Clinical Practice, 35, 323-328.
  93. Lange, D. D., Scholman, W. L. G., Kraaijenhagen, R. J., Akkerman, J. W. N., & Van De Wiel, A. (2004). Alcohol and polyphenolic grape extract inhibit platelet adhesion in flowing blood. European journal of clinical investigation, 34(12), 818-824.
  94. Oliveira-Freitas, V. L., Dalla Costa, T., Manfro, R. C., Cruz, L. B., & Schwartsmann, G. (2010). Influence of purple grape juice in cyclosporine bioavailability. Journal of Renal Nutrition, 20(5), 309-313.
  95. Dong, X., Ping, Z., Xiao, Z., & Shu, C. (1999). Possible enhancement of the first‐pass metabolism of phenacetin by ingestion of grape juice in Chinese subjects. British journal of clinical pharmacology, 48(4), 638-640.
  96. Nishikawa, M., Ariyoshi, N., Kotani, A., Ishii, I., Nakamura, H., Nakasa, H., … & Kitada, M. (2004). Effects of continuous ingestion of green tea or grape seed extracts on the pharmacokinetics of midazolam. Drug metabolism and pharmacokinetics, 19(4), 280-289.
  97. Ray, S. D., Parikh, H., Hickey, E., Bagchi, M., & Bagchi, D. (2001). Differential effects of IH636 grape seed proanthocyanidin extract and a DNA repair modulator 4-aminobenzamide on liver microsomal cytochrome 4502E1-dependent aniline hydroxylation. Molecular and cellular biochemistry, 218(1), 27-33.
Vind een orthomoleculaire therapeut bij jou in de buurt
Sluiten